THIN-LAYER CHROMATOGRAPHY OF THIOPHENE DERIVATIVES

R. F. CURTIS AND G. T. PHILLIPS

Department of Chemistry, University College of Swansea, Singleton Park, Swansea (Great Britain)

(Received March 8th, 1962)

While there are several accounts¹⁻⁴ of the application of normal column chromatographic techniques to the separation of thiophene derivatives, there has been no extensive use⁵ of qualitative techniques such as paper chromatography. This is probably due to the lack of suitable methods for the detection of these compounds. Most of the sensitive tests^{6,7} for the presence of thiophenes require the use of conc. sulphuric acid to catalyse a condensation with a carbonyl component. The reaction with isatin to give "indophenines" is typical.

The presence of sulphuric acid in these tests has made the use of paper chromatography difficult but this does not apply to thin-layer chromatography^{8,9} for qualitative separations. The use of aggressive reagents for detection in this method is well known.

In connection with other work in progress, qualitative separations were required and a range of standard thiophenes and derivatives have, therefore, been tested by this technique.

GENERAL PROCEDURE

Thin-layer chromatographic apparatus from Desaga G.m.b.H. was used with Alumina G and Silica G (Merck) as adsorbents in films of 275 μ thickness. The plates were activated by heating at 120° for one hour immediately before use and the thiophenes (ten on each plate) were then added with a micro-pipette in the usual way as solutions in chloroform (50 γ of thiophene derivative in 25 μ l of solvent). After equilibrating in the tank for 30 min the plates were irrigated with petroleum ether (b.p. 40-60°), benzene-chloroform (9:1) or methanol over a period of approximately 30 min at room temperature. Some of the thiophenes tested were volatile under these conditions but this difficulty was overcome by carrying out the complete operation in a cold room at 4°.

When the chromatogram was complete the spots were detected by fluorescence in U.V. light (2450 Å) followed by spraying with a solution of isatin (0.4%) in conc. sulphuric acid. Other carbonyl reagents (ninhydrin, benzil and phenanthraquinone) were tested and also gave positive results but showed no advantages. After examination the plates were heated for a few minutes at 120° when colour reactions which had not occurred at room temperature were observed and spots already visible at room temperature often showed characteristic colour changes.

J. Chromatog., 9 (1962) 366-368

THIOPHENE DERIVATIVES

RESULTS AND DISCUSSION

We have found that non-polar thiophenes can be separated on alumina by elution with petroleum ether, thiophenes of moderate polarity on silica by elution with benzene-chloroform (9:1) and the very polar thiophene derivatives by methanol on silica. There does not seem to be any characteristic colour produced by the thiophenes tested but there is a predominance of blue and violet colours. Only two thiophenes failed to react with the reagent but this effect was only observed on silica plates; positive reactions were obtained on alumina. There were small variations in the R_F values recorded but variation is often encountered with this technique and was overcome by running a standard compound on all chromatograms. α -Terthienyl was suitable for this purpose.

Adsorbent: Alumina G	Solvent: Petroleum ether (b. p40-60°)					
Compound	Concen- tration (y)	Colour under U.V.	Colour with isat in	RF × 100		
2-Methylthiophene*	50		Yellow → green blue	76		
3-Methylthiophene	300		Blue	82		
2-Ethylthiophene*	300		Deep yellow	92		
2,5-Dimethylthiophene*	300		Pink	95		
2,3,5-Trimethylthiophene*	50		Violet → pink	87		
2,3-Dimethyl-4-ethylthiophene*	50	·	Brown	84		
Tetramethylthiophene*	50		Violet → pink	89		
Methyl 3-thienyl sulphide*	50		Orange	92		
<i>n</i> -Decyl 3-thienyl sulphide*	50		Pale violet	96		
Bithienyl ¹	50	Violet	Blue	80		
a-Terthienyl ¹	5°	Yellow	Wine red \rightarrow blue green			
α -Quaterthienvl ¹	50	Lime green	Pale green	26		
5,5'-Dichlorobithienyl ¹⁰	50	Lime green	Violet	89		
5,5'-Dimethylbithienyl ¹⁰	50	Violet	Yellow	76		
a-Phenyl-a-bithienyl ¹⁰	50 50	Yellow	Green blue	50		
5,5'-Diphenylbithienyl ¹⁰	50	Blue	Wine red \rightarrow mauve	16		
5.5"-Dimethylterthienyl ¹⁰	50 50	Yellow	Wine red \rightarrow mauve	48		
Adsorbent: Silicagel G	Solvent: Benzene-chloroform (9:1)					
Thiophene-carboxaldehyde	300	Crimson	(Yellow**)	34 (84)**		
2-Nitrothiophene	300	Crimson		61 (91)*		
2-Benzoylthiophene	300	Crimson	Violet (120°)	39		
2-Acetylthiophene	300	Crimson	Violet (120°)	25		
Adsorbent : Silicagel G	Solvent: Methanol					
Thiophene-carboxylic acid	150	Crimson-violet	Grey \rightarrow blue (120°)	65		
β -(α -Thienyl)-acrylic acid	150	Crimson-violet	Violet	57		
4-(a-Thienyl)-butyric acid	150	Crimson-violet	Orange	60		
Bithienyl-5-carboxylic acid ¹⁰	- Jo 50	Deep violet	Yellow	63		
2,2'-Bithienyl-methylamine	5-			~J		
hydrochloride	50	Pale violet	Violet	35		

TABLE 1

Rn	VALUES	AND	COLOUR	REAC	TIONS
1 L F	VALUES	AND	COLOUK	REAU	110002

* Volatile samples run at 4°.

** When run at the same concentration on alumina and eluted with benzene-chloroform (9:1) these samples gave the results indicated (e.g. yellow).

367

÷

The lowest concentrations of the warious thiophenes which could be detected on the plates after development waried between different compounds and also depended on the solvent system and the adsorbent being used. The concentrations recorded are those which produce an intense spot and do not represent the lower limits of " detection. Later work¹¹ indicates that the silica-gel/benzene-chloroform system is of more general application than is represented by the results given in Table I.

ACKNOWLEDGEMENTS

We are grateful to British Petroleum (Chemicals Division) Sumbury and Dr. J. Brug, N.V. Philips-Duphar, Weesp, Netherlands for gifts of thiophene derivatives.

One of us ((G.T.P.) wishes to acknowledge the receipt of a post-graduate D.S.I.R. studentship.

SUMMARY

A method for the qualitative separation of various thiophene derivatives by means of thin-layer chromatography is described.

REFERENCES

- ¹ L. ZECHMEISTER AND J. W. SEASE, J. Ann. Chum. Soc., 69 (1947) 270, 273.
- ² C. J. THOMPSON, H. J. COLEMAN, H. T. BELL AND H. M. SMITH, *Anal. Chem.*, 27 (1955) 175. ³ C. H. Amberg, J. Inst. Petrol., 45 (1959) 1.
- ⁴ S. L. GUSINSKAYA, Doklady Akad. Nauk Uzbek. S.S.R., 7 (1958) 27; C.A., 53 (1959) 19359.
- ⁵ J. FRANC, J. Chromatog., 3 (1960) 317.
- ⁶ H. D. HARTOUGH, The Chemnistry of Hieterrocyclic Commpounds—Thiophane and its Derivatives, Interscience Publishers Inc., New York, 1952, p. 15.
- 7 F. FEIGL, Spot Tests in Organic Analysis, 5th Ed., Elsevier, Amsterdam, 1956, p. 425.
- ⁸ E. DEMOLE, J. Chromatog., 6 (1961) 2.
- ⁹ E. G. WALLISH, M. SCHMALL AND M. HAWRYLYSHYN, Amal. Chem., 33 (1961) 1138.
- ¹⁰ J. H. UHLENBROEK AND J. D. BIJLOO, Rec. tman. chime, 79 (1960) 1181.
- 11 R. F. CURTIS AND G. T. PHILLIPS, umpublished results.

J. Chnomatog., 9 (1962) 366-368